133 research outputs found

    Young people's views on the potential use of telemedicine consultations for sexual health: results of a national survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Young people are disproportionately affected by sexually transmissible infections in Australia but face barriers to accessing sexual health services, including concerns over confidentiality and, for some, geographic remoteness. A possible innovation to increase access to services is the use of telemedicine.</p> <p>Methods</p> <p>Young people's (aged 16-24) pre-use views on telephone and webcam consultations for sexual health were investigated through a widely-advertised national online survey in Australia. Descriptive statistics were used to describe the study sample and chi-square, Mann-Whitney U test, or t-tests were used to assess associations. Multinomial logistic regression was used to explore the association between the three-level outcome variable (first preference in person, telephone or webcam, and demographic and behavioural variables); odds ratios and 95%CI were calculated using in person as the reference category. Free text responses were analysed thematically.</p> <p>Results</p> <p>A total of 662 people completed the questionnaire. Overall, 85% of the sample indicated they would be willing to have an in-person consultation with a doctor, 63% a telephone consultation, and 29% a webcam consultation. Men, respondents with same-sex partners, and respondents reporting three or more partners in the previous year were more willing to have a webcam consultation. Imagining they lived 20 minutes from a doctor, 83% of respondents reported that their first preference would be an in-person consultation with a doctor; if imagining they lived two hours from a doctor, 51% preferred a telephone consultation. The main objections to webcam consultations in the free text responses were privacy and security concerns relating to the possibility of the webcam consultation being recorded, saved, and potentially searchable and retrievable online.</p> <p>Conclusions</p> <p>This study is the first we are aware of that seeks the views of young people on telemedicine and access to sexual health services. Although only 29% of respondents were willing to have a webcam consultation, such a service may benefit youth who may not otherwise access a sexual health service. The acceptability of webcam consultations may be increased if medical clinics provide clear and accessible privacy policies ensuring that consultations will not be recorded or saved.</p

    Role of the PAS sensor domains in the Bacillus subtilis sporulation kinase KinA

    Get PDF
    Histidine kinases are sophisticated molecular sensors that are used by bacteria to detect and respond to a multitude of environmental signals. KinA is the major histidine kinase required for initiation of sporulation upon nutrient deprivation in Bacillus subtilis. KinA has a large N-terminal region (residues 1 to 382) that is uniquely composed of three tandem Per-ARNT-Sim (PAS) domains that have been proposed to constitute a sensor module. To further enhance our understanding of this "sensor" region, we defined the boundaries that give rise to the minimal autonomously folded PAS domains and analyzed their homo- and heteroassociation properties using analytical ultracentrifugation, nuclear magnetic resonance (NMR) spectroscopy, and multiangle laser light scattering. We show that PAS(A) self-associates very weakly, while PAS(C) is primarily a monomer. In contrast, PAS(B) forms a stable dimer (K-d [dissociation constant] o

    Apolipophorin-III Mediates Antiplasmodial Epithelial Responses in Anopheles gambiae (G3) Mosquitoes

    Get PDF
    Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes.We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold.There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection

    Conservation Genetics of a Critically Endangered Limpet Genus and Rediscovery of an Extinct Species

    Get PDF
    A third of all known freshwater mollusk extinctions worldwide have occurred within a single medium-sized American drainage. The Mobile River Basin (MRB) of Alabama, a global hotspot of temperate freshwater biodiversity, was intensively industrialized during the 20(th) century, driving 47 of its 139 endemic mollusk species to extinction. These include the ancylinid limpet Rhodacmea filosa, currently classified as extinct (IUCN Red List), a member of a critically endangered southeastern North American genus reduced to a single known extant population (of R. elatior) in the MRB.We document here the tripling of known extant populations of this North American limpet genus with the rediscovery of enduring Rhodacmea filosa in a MRB tributary and of R. elatior in its type locality: the Green River, Kentucky, an Ohio River Basin (ORB) tributary. Rhodacmea species are diagnosed using untested conchological traits and we reassessed their systematic and conservation status across both basins using morphometric and genetic characters. Our data corroborated the taxonomic validity of Rhodacmea filosa and we inferred a within-MRB cladogenic origin from a common ancestor bearing the R. elatior shell phenotype. The geographically-isolated MRB and ORB R. elatior populations formed a cryptic species complex: although overlapping morphometrically, they exhibited a pronounced phylogenetic disjunction that greatly exceeded that of within-MRB R. elatior and R. filosa sister species.Rhodacmea filosa, the type species of the genus, is not extinct. It persists in a Coosa River tributary and morphometric and phylogenetic analyses confirm its taxonomic validity. All three surviving populations of the genus Rhodacmea merit specific status. They collectively contain all known survivors of a phylogenetically highly distinctive North American endemic genus and therefore represent a concentrated fraction of continental freshwater gastropod biodiversity. We recommend the establishment of a proactive targeted conservation program that may include their captive propagation and reintroduction

    Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV

    Full text link
    We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.Comment: 4 pages, 3 figures, 1 table, submitted to PR

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Highly Anomalous Energetics of Protein Cold Denaturation Linked to Folding-Unfolding Kinetics

    Get PDF
    Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a “mirror image” of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions

    Contesting longstanding conceptualisations of urban green space

    Get PDF
    Ever since the Victorian era saw the creation of “parks for the people,” health and wellbeing benefits have been considered a primary benefit of urban parks and green spaces. Today, public health remains a policy priority, with illnesses and conditions such as diabetes, obesity and depression a mounting concern, notably in increasingly urbanised environments. Urban green space often is portrayed as a nature-based solution for addressing such health concerns. In this chapter, Meredith Whitten investigates how the health and wellbeing benefits these spaces provide are limited by a narrow perspective of urban green space. Whitten explores how our understandings of urban green space remain rooted in Victorian ideals and calls into question how fit for purpose they are in twenty-first-century cities. Calling on empirical evidence collected in three boroughs in London with changing and increasing demographic populations, she challenges the long-held cultural underpinnings that lead to urban green space being portrayed “as a panacea to urban problems, yet treating it as a ‘cosmetic afterthought’” (Whitten, M, Reconceptualising green space: planning for urban green space in the contemporary city. Doctoral thesis, London School of Economics and Political Science, London, U.K. http://etheses.lse.ac.uk/. Accessed 12 Jun 2019, 2019b, p 18)

    Mining Predicted Essential Genes of Brugia malayi for Nematode Drug Targets

    Get PDF
    We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression
    corecore